 
      Java-Applets:
 Unter einer Wurzel von a versteht man die nicht negative Zahl, die
             quadriert a ergibt. Du lernst in diesem Abschnitt, wie man einfache Wurzeln bildet.
             
              Arbeitsblatt    zu Kapitel 1.1
             
             
 Ist der Radikant keine Quadratzahl, kann die Wurzel nur in unednlich vielen Schritten 
             berechnet werden. Man muss sie mit Hilfe einer Intervallschachtelung bestimmen.
             
              Arbeitsblatt    zu Kapitel 1.2
             
 Falls es im Unterricht zu schnell ging, schau dir das folgende  Video  an.
             
 Bei Produkten und Quotienten darf man gliedweise die Wurzel ziehen, nicht jedoch bei den Trichrechenarten 
                 + und - .
             
              Arbeitsblatt    zu Kapitel 1.3
             
 Nicht alle dezimalen Zahlen sind in den rationalen Zahlen. Diese irrationalen Zahlen besitzen eine unendliche
              nicht periodische Darstellung .
             
              Arbeitsblatt    zu Kapitel 1.4
             
 Manchmal kann man nur zum Teil die Wurzel ziehen. Der nicht-quadratische Rest bleibt unter der Wurzel.
             Mit Zahlen kannst du das im App Teil üben. In der anderen Richtung kann man auch alles unter eine Wurzel bringen.
             
              Arbeitsblatt    zu Kapitel 1.5
             
 Leider darf man bei den Strichrechenarten nicht gliedweise addieren bzw subtrahieren. Man darf aber
             gleichartige Terme addieren. Hintergrund dafür ist das Distributivgesetz.
             
              Arbeitsblatt    zu Kapitel 1.6
             
 Mit Hilfe der binomischen Formeln 1 und 2 kann man Summen in reine Quadrate umwandeln, aus denen man dann die
                 Wurzel ziehen kann.
             
              Arbeitsblatt    zu Kapitel 1.7
             
 Es ist oft schöner, wenn man im Nenner keine Wuzeln stehen hat. Es gibt zwei Tricks. Einmal erweitert man mit der Wurzel im
             Nenner, das andere mal mit der 3. binomischen Formel.
             
              Arbeitsblatt    zu Kapitel 1.8
             
 Falls es im Unterricht zu schnell ging, schau dir das folgende  Video  an.
             
 Bei Wurzelgleichungen muss zuerst die Definitionsmenge bestimmt werden. Für die Lösung muss die Wurzel durch quadrieren beseitigt werden. Rein quadratische 
             Gleichungen löst man nach x² auf und zieht dann die Wurzel.  Achtung:  Es kann zwei Lösungen geben.
             
              Arbeitsblatt    zu Kapitel 1.9
             
 Quadratische Gleichungen mit einem x² und einem x Term kann man auflösen durch Ausklammern oder Teilen durch x. Der letztere Weg hat jedoch ein
             Risiko, nämlich, dass man die 0 als Lösung unterschlägt.
             
              Arbeitsblatt    zu Kapitel 2.1
             
 Eine allgemeine quadratische Gleichung löst man, indem man den x und den x² Term auf eine Seite bringt und die Zahl auf die anderen. Dann wird
             durch Ergänzen von b² mit Hilfe einer binomischen Formel ein reines Quadrat hergestellt, aus dem man die Wurzel ziehen kann.
             
              Arbeitsblatt    zu Kapitel 2.2
             
 Falls es im Unterricht zu schnell ging, schau dir das folgende  Video  an.
             
 Eine quadratische Gleichung der Form ax² + bx + c = 0 lässt sich immer mit der Mitternachtsformel lösen. In dieser Formel kommen nur a, b und c
             vor. Man berechnet als Zwischenschritt zuerst die Diskriminante D. Diese entscheidet, ob es eine, zwei oder keine Lösung gibt.
             
              Arbeitsblatt    zu Kapitel 2.2
             
 Sind die Lösungen einer  normierten  quadratischen Gleichung (x²+px+q=0) ganzzahlig, dann muss deren Produkt q und
             deren Summe -p ergeben.
             
              Arbeitsblatt    zu Kapitel 2.3
	     
 Falls es im Unterricht zu schnell ging, schau dir das folgende  Video  an.
             
 Obwohl man es im Alltag nicht zu oft mit quadratischen Gleichungen zu tun hat, gibt es diese trotzdem. Die Auswahl in dem folgenden
             Aufgabenblatt soll euch diese Thematik etwas näher bringen.
             
              Arbeitsblatt    zu Textaufgaben.
             
 Zeichnet man den Graphen von y = x², so ergibt sich eine Normalparabel. Multipliziert man diese Gleichung mit einem konstanten Faktor a, also 
             y = ax², so ändert sich die Form der Parabel, aber nicht der Scheitel. Bei y = (x-b)² + a verschiebt das a in y- und das b in x- Richtung. Der Scheitelpunkt S
             liegt bei S(b|a).
             
              Arbeitsblatt    zu quadratischen Funktionen.
             
 Ist eine Parabelgleichung in der Scheitelform y = a(x-b)²+c gegeben, dann kann man diese sehr leicht skizzieren. Der Scheitel S liegt bei S(b|c).
             a ist der Formfaktor, der angibt, wie stark die Flanken der Parabel ansteigen.
             
              Arbeitsblatt    zur Scheitelform.
             
 Ist eine Parabelgleichung in der Normalform y = ax²+bx+c gegeben, dann verliert man die Information über den Scheitel. Man muss durch quadratisches
             Ergänzen die Scheitelform wieder herstellen.
             
              Arbeitsblatt    zur Normalform.
	     
 Falls es im Unterricht zu schnell ging, schau dir das folgende  Video  an.
             
 Neben dem Scheitel schenkt man auch den Schnittpunkten mit der x-Achse größere Aufmerksamkeit. Ein Punkt liegt immer dann auf der x-Achse, wenn der y-Wert gleich 0 ist.
	     Setzt man für y den Wert 0 in die Parabelgleichung ein, muss man nur noch die quadratische Gleichung auflösen und man hat die Nullstellen. Es kann zwei, eine oder keine 
	     geben. Hat man sie Nullstellen, so kann man auch den x-Wert des Scheitelpunktes ermitteln. Dieser liegt genau zwischen den Nullstellen.
             
              Arbeitsblatt    zu den Nullstellen.
             
 Bei zwei Geraden hat man den gemeinsamen Schnittpunkt durch das Gleichsetzungsverfahren ermittelt. Genauso kann man vorgehen, um den Schnittpunkt von Gerade und
             Parabel, bzw von zwei Parabeln berechnen.
             
              Arbeitsblatt    zu Schnittpunkten.
	     
 Falls es im Unterricht zu schnell ging, schau dir das folgende  Video  an.
             
 Bei Parabeln unterscheiden wir die Normalform y = ax² + bx + c, welche einem keine Auskunft über die Lage des Scheitelpunkts gibt, und die
             Scheitelform y = a (x - xS)² + yS  bei der man den Scheitelpunkt direkt ablesen kann. wie man beide Formen ineinander umwandelt, lernt man in
             diesem Kapitel. 
             
              Arbeitsblatt    zu Parabelformen.
	     
 Falls es im Unterricht zu schnell ging, schau dir das  Video 1  und
               Video 2  an.
	     
 Die dritte Form einer Parabelgleichung ist praktisch, wenn man die Nullstellen kennt und will die Parabelgleichung aufstellen.
             Sie lautet y = a (x-x1) (x-x2) mit den Nullstellen x1 und x2. Sie existiert leider nur dann, wenn die Parabel auch Nullstellen besitzt, d.h.
             wenn diese die x-Achse schneidet.
             
              Arbeitsblatt    zur Nullstellenform.
             
 Schau dir vielleicht erst mal das folgende  Erklärvideo  an.